

Welcome to x/84’s documentation!

Read the pdf [https://media.readthedocs.org/pdf/x84/latest/x84.pdf] version

Contents:

	Introduction
	Quickstart

	Documentation, Support, Issue Tracking

	Project Details
	Compatible Clients

	Binding to port 23
	Linux

	Solaris 10

	BSD

	Other

	Other Telnet BBS Systems
	How x/84 compares

	History

	What does x/84 mean?

	Future Directions

	Running a message server
	Configuring a hub

	Configuring a leaf node

	Authorship

	Doors
	Dosemu

	Web server
	Starting a web server

	Lookup path

	Serving static files

	Writing a web module
	The handler class

	The REST API

	Enabling the module

	Testing the module

	Take it further

	Developers
	Requirements
	Virtualenv

	Install editable version

	Starting x/84

	As another user

	x84 Usage

	Customizing your board
	main(), gosub, and goto

	Basic example
	def main():

	from x84.bbs import ...

	echo(...)

	term.bold_red(...)

	term.inkey()

	Engine
	x84.engine

	x84.db

	Protocols
	x84.server

	x84.client

	x84.telnet

	x84.ssh

	x84.rlogin

	x84.sftp

	x84.webserve

	Service Plugins
	x84.fail2ban

	x84.msgpoll

	Terminal I/O
	x84.terminal

	Userland/scripting API
	x84.bbs.door

	x84.bbs.editor

	x84.bbs.ini

	x84.bbs.ipc

	x84.bbs.lightbar

	x84.bbs.output

	x84.bbs.pager

	x84.bbs.session

	x84.bbs.userbase

	x84.bbs.ansiwin

	x84.bbs.dbproxy

	x84.bbs.exception

	x84.bbs.msgbase

	x84.bbs.selector

	x84.bbs.telnet

Indexes

	Index

	Module Index

Introduction

An experimental python 2 Telnet (and SSH) BBS

this project is abandoned, so please don’t get too excited! Maybe you
would be more interested in ENiGMA½ [https://enigma-bbs.github.io/]

The primary purpose of x/84 is to provide a server framework for building
environments that emulate the feeling of an era that predates the world wide web.

It may be used for developing a classic bulletin board system (BBS) – one is
provided as the ‘default’ scripting layer. It may also be used to develop a MUD,
a text-based game, or a game-hosting server such as done by dgamelaunch.

You may access the “default board” provided by x/84 at telnet host 1984.ws:

telnet 1984.ws

See clients [http://x84.readthedocs.org/en/latest/project_details.html#compatible-clients] for a list of compatible clients, though any terminal should be just fine.

Quickstart

Note that only Linux, BSD, or OSX is supported. Windows might even work, but hasn’t been tested.

	Install python [https://www.python.org/] 2.7 and pip [http://guide.python-distribute.org/installation.html#installing-pip]. More than likely this is possible through your
preferred distribution packaging system.

	Install x/84:

pip install x84[with_crypto]

Or, if C compiler and libssl, etc. is not available, simply:

pip install x84

Please note however that without the [with_crypto] option, you
will not be able to run any of the web, ssh, and sftp servers, and
password hashing (and verification) will be significantly slower.

If you receive an error about setuptools_ext not being found, you
may need to upgrade your installed version of setuptools and try again:

pip install -U setuptools pip

	Launch the x84.engine python module:

x84

	Telnet to 127.0.0.1 6023, Assuming a bsd telnet client:

telnet localhost 6023

All data files are written to ~/.x84/. To create a custom board,
you might copy the default folder of the x/84 python module to a
local path, and point the scriptpath variable of ~/.x84/default.ini
to point to that folder.

Simply edit and save changes, and re-login to see them. Adjust the
show_traceback variable to display any errors directly to your
telnet or ssh client.

Documentation, Support, Issue Tracking

See Documentation [http://x84.readthedocs.org/] for API and general tutorials, especially the developers [https://x84.readthedocs.org/en/latest/developers.html]
section for preparing a developer’s environment if you wish to contribute
upstream. Of note, the Terminal interface is used for keyboard input
and screen output, and is very well-documented in blessed [http://pypi.python.org/pypi/blessed].

This project isn’t terribly serious (for example, there are no tests). See the project on github [https://github.com/jquast/x84]
for source tree. Please note that this project is abandoned. Feel free to do whatever the heck
you want with it, though, it is Open Source and ISC licensed!

Project Details

General information useful for prospective developers and users.

Compatible Clients

Any UTF-8 client is compatible. For Apple systems, Andale Mono
works wonderfully for cp437 blockart. Please note that many modern
terminal emulators (especially Apple) modify the default 16 colors
away from their original CGA specification. This will cause CP437
block-art to appear milky and poor, you should ensure your colorscheme
is configured exactly as the CGA specification
http://en.wikipedia.org/wiki/Color_Graphics_Adapter#Color_palette

	PuTTy

	Under preference item Window -> Translation, option Remote character set,
change iso8859-1 to UTF-8.

	iTerm/iTerm2

	Menu item iTerm -> Preferences, section Profiles, select tab Text,
chose Andale Mono font.

	Terminal.app

	Menu item Terminal -> Preferences, chose profile Pro, select Font
Andale Mono, and enable use bright colors for bold text.

	uxterm

	Or other utf-8 rxvt and xterm variants: urxvt, dtterm.
Recommended font is Deja Vu Sans Mono.

	Amtelnet (Amiga workbench)

	Enable the tool type NOSCROLLER in the Amtelnet icon file in order to disable
the scrollbar and enter full screen width.

	Non-unicode Terminals

	Other than UTF-8, only IBM CP437 encoding is supported. Any telnet client
with CP437 font is (currently) supported.

	Examples of these include PuTTy, SyncTerm, mtel, netrunner,
various minix/linux/bsd consoles with a linux or bsd telnet client.

	Some non-DOS terminal emulators may require installing a fontset, such as
Terminus to provide CP437 art.

Binding to port 23

x/84 does not require privileged access, and its basic configuration binds to port 6023 for telnet and 6022 for ssh. Multi-user systems do not typically allow non-root users to bind to port 23 or 22. Below are various techniques for allowing it.

Alternatively, you can always use port forwarding on a NAT firewall.

Linux

using privbind [http://sourceforge.net/projects/privbind/], run the BBS as user ‘nobody’, group ‘nogroup’:

sudo privbind -u nobody -g nogroup x84

The default board, 1984.ws runs from the git master branch
from a virtualenv using command:

PYTHON_EGG_CACHE=/tmp/nobody.python-eggs sudo privbind -u nobody -g nogroup `which python` -mx84.engine

with system files /etc/x84/default.ini and /etc/x84/logging.ini configured
to save data in nobody-owned files and folders at path /var/x84.

Solaris 10

grant net_privaddr privilege to user ‘bbs’:

usermod -K defaultpriv=basic,net_privaddr bbs

BSD

redirection using pf(4):

pass in on egress inet from any to any port telnet rdr-to 192.168.1.11 port 6023

Other

Using socat [http://www.dest-unreach.org/socat/], listen on 192.168.1.11 and for each connection, fork as ‘nobody’, and pipe the connection to 127.0.0.1 port 6023:

sudo socat -d -d -lmlocal2 TCP4-LISTEN:23,bind=192.168.1.11,su=nobody,fork,reuseaddr TCP4:127.0.0.1:6023

This has the disadvantage that x84 is unable to identify the originating IP.

Other Telnet BBS Systems

Listed here is software known in the “bbs-scene” as still being actively used, in descending order of their (estimated) popularity.

	synchronet [http://www.synchro.net/]: C formerly commercial, now open source.

	mystic [http://mysticbbs.com/]: Pascal, create a sourceforge account to access source code.

	daydream [https://github.com/ryanfantus]: C open source.

	enthral [https://github.com/M-griffin/EnthralBBS]: C++ open source.

Many more systems can be found at List_of_BBS_software [https://en.wikipedia.org/wiki/List_of_BBS_software]

How x/84 compares

It might best to compare x/84 with the most popularly used surviving BBS systems, mainly: mystic [http://mysticbbs.com/], synchronet [http://www.synchro.net/], and daydream [https://github.com/ryanfantus].

Process Management

	All other systems are single process: executed as a “login shell” by xinet.d or similar, they depend on additional 3rd-party systems and distribution packages for telnet or ssh support.

	x/84 on the other hand, is a single process that manages the telnet, ssh, sftp, web, and rlogin server. This means no additional steps are required to start a working bbs once installed; no special user accounts, xinet.d, or database setup required, only python.

	This tight integration allows one to login by ssh or sftp with your bbs user account and public key, for example. Or to react to and determine window-size changes over telnet and ssh.

	as a dynamic language, it also allows one to rapidly develop on much of the system without compilation or publishing layer – simply login again to see the new changes afresh without restarting the server, and without a compilation step.

	a “script stack” allows exceptions in scripts to be managed and optionally displayed to the client. One can rapidly develop a script from the main menu, try it, see an exception such as a SyntaxError thrown, with the traceback and offending line. Then, fix and save changes from your editor, and select the menu option to try it again – without ever logging off!

Scripting Layer

	All other systems are written in C or Pascal, published in binary form, providing a limited subset of functionality through a scripting layer in an entirely different language, such as a particular dialect of javascript, python, perl, or pascal.

	x/84 is python throughout – you may extend the engine layer to provide new features in the same language and with full access in the scripting layer without providing any stubs, function exports, or facilitating modules. The same methods used in the engine for session and user management are available in the scripting layer.

Customization

	Most systems take an approach of providing a proprietary layer of customization: special menu files with codes for navigating between other menus and scripts, or displaying artfiles with special codes for displaying dynamic data such as a login name.

	x/84 customization is done only by python scripting. Making a menu is simply writing a script to do so. One may simply echo out the contents of an artfile, move the cursor to the desired location, and echo out any variable. Special functions are provided to gain access to, for example, “Terminal” and “Session”, but do not necessarily require it. There are no limitations, you may use anything python is capable of.

Encoding

	All other systems are completely agnostic of encoding – so most systems assume an IBM-PC CP437 encoding, or must specify which “character set” to use. This means a bbs must either conform to english-only, or require connecting clients to chose a specific character set for their terminal emulator, which means compromising to ascii-only art.

	x/84 primarily supports only UTF-8, with special accommodation for CP437-only terminal encodings, such as SyncTerm. This allows the same BBS containing CP437-encoded artwork and DOS-emulated Doors (such as Lord) to be presented on modern terminals, yet host any number of UTF-8 supported languages such as japanese, swedish, russian, etc.

History

In 2002, Jeff Quast [https://jeffquast.com/], author of x84 ran mystic [http://mysticbbs.com/] on Linux which gained popularity due to its association with a pirate channel he managed on efnet, regularly receiving 30-50 daily callers, which exposed numerous bugs and design issues. Frustrated by its closed-source nature and the (intermittent) abandonment of the author, Jeff set out to write his own from-scratch.

He and Johannes Lundberg [http://github.com/johannesl/] of Sweden met who had already began writing his own system, initially named just “pybbs”, this was authored in the Python language. Overnight, a 5,000-line patch was returned to Johannes and they agreed to collaborate on a new system, with focus on the new Unix developer traditions and open source.

They grew apart over time with their forks, Johannes providing a new redesign called “The Progressive (PRSV)”, which Jeff re-based and began to contribute to when they re-combined efforts years later. Johannes continually asserted that he would maintain and later release PRSV, but as his involvement wanned, Jeff renamed his fork as x/84, with the intent to merge upstream some day.

x/84 retains only some of the design and basic variables, such as the concept of a session but is otherwise completely rewritten by the work of Jeff alone through 2013, when many contributions over github were received after being released to pypi.

What does x/84 mean?

x/84 is a re-imagination of the early dial-up systems. Targeted for, but not limited to, running a bulletin board over the TCP/IP protocol. The name x/84 is derived from the theme of an “amiexpress-style system for an Orwellian future”.

It was thought of as a small part of a science fiction universe: an alternative future where governments have banned internet anonymity and free speech, and those who wish to have it must gateway to underground systems such as these to communicate.

It was a lot farther on the “science fiction” end of the spectrum 10 years ago…

Future Directions

basic v3.0 roadmap:

	python3 using async i/o

	windows support, requires ansi.sys support emulation for PDCurses in blessed

	ftp, ftps, fxp support

	modeling (using ‘schematics’ project) for userbase, messagebase, etc.

	support for agoranet, zeronet, etc. messaging networks

Feel free to contribute ideas as a github issue.

Running a message server

Through the web modules system, x/84 provides a clever ability
of intra-bbs messaging through a json-formatted RESTful API.

This is an experimental feature recently added to v2.0, herein
describes the process for beginning a message server, “hub”, and
a polling and publishing message client, “leaf”. Both the hub
and leaf nodes are x/84 systems: the hub, running a https server
and the client polling for messages and publishing through the
REST api of the hub.

Configuring a hub

Firstly, an SSL certificate and matching dnsname of the hub
is required. The following sections assume files, given the
domain 1984.ws, and were created by using sslmate [http://sslmate.com/]:

-rw-r--r-- 1 root root 5982 Jan 01 00:00 /etc/ssl/www.1984.ws.chained.crt
-rw-r--r-- 1 root root 1879 Jan 01 00:00 /etc/ssl/www.1984.ws.crt
-rw------- 1 root root 1679 Jan 01 00:00 /etc/ssl/www.1984.ws.key

Then, the default.ini file is modified to be extended with the
following details:

[web]
enabled = yes
addr = 88.80.6.213
port = 8443
key = /etc/ssl/www.1984.ws.key
cert = /etc/ssl/www.1984.ws.crt
chain = /etc/ssl/www.1984.ws.chained.crt
modules = msgserve

[msg]
server_tags = defnet

The addr and port of section [web] keys define the TCP/IP address
and port binded by the web server, and modules defines a list of scripts
from folder x84/webmodules served – here, we define msgserve.
As our serving host has multiple external IP addresses, we choose only the IP
address matching our dnsname 1984.ws. The key, chain, and cert
are references to the SSL certificate files retrieved when running the sslmate [http://sslmate.com/]
purchase utility.

Messaging on x/84 implements the concept of “tags” – the most common of them
are tags public and private – though any arbitrary tag may be applied.
The server_tags value of section [msg] defines a single “tag”, that, for
all messages with such tag, are served externally to the leaf nodes that poll
for new messages. Here, we chose defnet – to signify the “default x/84
messaging network”.

When restarting x/84, we may see the log info message:

INFO webserve.py:223 https listening on 88.80.6.213:8443/tcp

Configuring a leaf node

On the hub system as a user of the ‘sysop’ group, enter the ‘sysop’ menu
from the main menu, and choose ‘a’dd new leaf node.

It’s output will be the recommended configuration for the leaf node’s
default.ini. You may need to adjust the base_url value to reflect
your external dnsname (the local bind address is used, by default):

[msgnet_defnet]
url_base = https://88.80.6.213:8443/
board_id = 1
token = 6MvmGtvMfDF9mkuCfyGxU2IBMmFPhP8ZC70oI0hwKBk=
poll_interval = 300

[msg]
network_tags = defnet

Then, provide the sysop of the client bbs this output, and suggest
to augment their default.ini with its contents and restart the
leaf node.

Authorship

This extension to x/84 was authored by @haliphax [http://github.com/haliphax/], who
also hosted the first hub server on host oddnetwork.org.

Doors

Of the default board, a “sesame.py” script is provided (x84/default/sesame.py)
along with dynamic addition of doors by the main menu (x84/default/main.py)
for any scripts defined by a special notation of the default.ini
configuration file.

A very simple unix door of /bin/bash, which is accessible only for
users that are a member of the ‘sysop’ group is as follows:

[sesame]
bash = /bin/bash
bash_key = bash
bash_text = bash shell
bash_sysop_only = yes
bash_env_PATH = /bin:/usr/bin:/usr/local/bin

Description of sesame configuration options:

	{name}: The ‘basename’ name of the door file, with the value of executable
and arguments used. It is only included in the main menu of the command exists,
and may be disabled by using value of no. The command path may access
information from the bbs session instance, such as {session['handle']}, or
system-wide configuration such as {system['datapath']}. The special format
argument {node} is also supplied. If it exists, a unique per-door and
per-session node is acquired through the bbs global lock system.

	{name}_env_{ENVKEY}: Override any environment variables by {ENVKEY} and value.

	{name}_key: Command key in the main menu used to launch this door.

	{name}_text: Text displayed for main menu option.

	{name}_droptype: Any of DOORSYS, DOOR32, CALLINFOBBS, or DORINFO. This value
is only honored if the command path is targets a binary named dosemu.
The default value is DOORSYS if unspecified.

	{name}_droppath: The linux-local folder where the dropfile is saved. The
dropfile will only be saved when this parameter is set..

	{name}_nodes: The number of nodes this door supports.

	{name}_cols and {name}_rows: Suggest the user to resize their terminal
to this window size.

	{name}_cp437 (bool): whether or not to decode the program’s output as cp437.

	{name}_sysop_only (bool): whether this door is limited to only sysops.

Dosemu

Doors using dosemu [http://www.dosemu.org/] are very popular (note: only works on linux).
We can configure a popular game of LORD as follows. For file
/etc/dosemu.conf, we use configuration options:

$_cpu = "80486"
$_cpu_emu = "vm86"
$_external_char_set = "utf8"
$_internal_char_set = "cp437"
$_term_updfreq = (8)
$_layout = "us"
$_rawkeyboard = (0)

Of note, we use the vm86 cpu emulator to allow real-mode emulation
on virtual machines, and we use utf8 for the external character and
cp437 for the internal character set, to allow dosemu to perform the
codepage translations on our behalf.

We create an X: drive folder at /DOS/X containing an installation
of LORD at X:\LORD, configured for DORINFO dropfiles (by running
LORDCFG.EXE), and add the program bnu_ to “drive C”
/DOS/.dosemu/drive_c with autoexec.bat contents:

@echo off
path d:\bin;d:\gnu;d:\dosemu
set TEMP=c:\tmp
prompt PG
C:\BNU\BNU.COM /L0:57600,8N1 /F
lredir.com x: linux\fs\DOS\X
unix -e

The unix -e option allows passing subsequent commands by command line
parameter, which is what we’ll use to offer any number of doors with the
same autoexec.bat file. We also make sure to modify lord’s START.BAT
to ensure the folder is changed to X:\LORD before starting.

Finally, we add lord to the sesame configuration:

[sesame]
lord = /usr/bin/dosemu -quiet -f /etc/dosemu/dosemu.conf -I '$_com1 = "virtual"' 'X:\LORD\START.BAT {node}'
lord_env_HOME = /DOS
lord_key = lord
lord_text = play lord
lord_droptype = DORINFO
lord_droppath = /DOS/X/lord
lord_nodes = 32
lord_cols = 80
lord_rows = 25

Which then allows us to run this game by typing “lord” in the main menu.

Please note, that there is a 4 second pause before any input is accepted,
(so you may not immediately press return at the <MORE> prompt). This is
to work around a dosemu bug where input becomes garbaged and bit-shifted
if any keyboard input is received during startup.

Web server

An optional web server is provided in x/84 using the basic web.py [http://webpy.org/] python
library. It is possible to build web “endpoints” that may make use of x/84’s
database and configuration items, these are called “web modules”. Of the default
board, intra-bbs messaging is provided by a web module, for example.

Starting a web server

Of your ~/.x84/default.ini file, set the configuration of the [web] section
value enabled = yes (by default, it is no). You will also require a
certificate, key, and sometimes a chain certificate file – only HTTPS is
supported at this time. This is documented in more detail in the “Configuring a
hub” section of the message network page.

For the server to successfully launch, at least one module must be enabled, the
simple example modules oneliners, lastcallers may be enabled, for example:

[web]
enabled = yes
addr = 123.123.123.123
port = 8443
key = /etc/ssl/www.1984.ws.key
cert = /etc/ssl/www.1984.ws.crt
chain = /etc/ssl/www.1984.ws.chained.crt
modules = oneliners, lastcallers

If everything is configured properly, you should see something like this at
startup:

Mon-01-01 12:00AM INFO webserve.py:207 https listening on 123.123.123.123:8443/tcp

Lookup path

There are only two lookup paths for the values defined by modules,
preferably, the sub-folder, webmodules/ of your scriptpath configuration
of section [system] in your ~/.x84/default.ini file. These are imported
by their python module name, so file scriptpath/webmodules/oneliners.py is
simply oneliners. If the file is not found there, it will then look for it
in the package path of x84, which can be found using command:

$ python -c 'import os, x84.webmodules; print(os.path.dirname(x84.webmodules.__file__))'

Serving static files

One of x/84’s internal web modules is called static. If you enable this
module, x/84 will serve static file content from the www-static subdirectory
of your system’s top-level scriptpath. The top-level refers to the first
item in this array. If you wish to set the document root to some other
location, use the document_root option in the [web] section of your
configuration file.

[web]
; other configuration here
modules = static
document_root = /var/www

The static files are served from /www-static/, so if your server is
https://123.123.123.123:8443, and the file is style.css, it would
be served as https://123.123.123.123:8443/www-static/style.css.

Writing a web module

While some web modules, such as the message network module,
operate outside of userland and are leveraged by the engine for low-level
functionality. However, you can write your own modules–and even override the
internal modules–by placing your scripts in the webmodules subdirectory
of your x/84 system’s script directory and adding them to the modules
list in the [web] section of your configuration file.

As examples, two web modules have been included with the “default board”
installed alongside x/84: :module:`x84.default.oneliners` and
:module:`x84.default.lastcallers`. These are rudimentary examples which both
read information from DBProxy objects and format them for display on the
web. They serve to demonstrate interacting with the engine layer outside of
a terminal session; accepting command options through the use of GET
parameters; how Python classes ultimately translate into URL handlers; and
exposing URL handlers to the x/84 engine process.

The handler class

First and foremost, we need to build a class which will be handling our HTTP
requests. x/84’s web server uses web.py [http://webpy.org/] internally, and so we give our class
a method function for each HTTP verb [https://wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods] we want it to respond to. For the
purposes of demonstration, the class below will only be responding to GET
requests.

class EchoHandler(object):

 """ Demonstration URL Handler """

 def GET(self, echo=None):
 """ Echo back to the user. """

 if not echo:
 echo = u"I can't hear you!"

 return echo

This class will echo back whatever the user writes in the URL. If the user
doesn’t write anything, it will display, “I can’t hear you!”

The REST API

Now, we need to inform the x/84 engine process about the existence of our web
module and what URL pattern(s) it should be invoked for. We do this by putting
a root-level web_module function in our script that returns a dict
object with this information.

def web_module():
 """ Return a dict of our REST API. """

 return {'urls': ('/echo(.*)?', 'echo'), 'funcs': {'echo': EchoHandler}}

The first dict entry, urls, is a list where pairs of URL patterns and
keywords are associated with one another. The pattern is that each
even-numbered entry (0, 2, 4, 6, …) is a URL pattern and each following
odd-numbered entry (1, 3, 5, 7, …) is a keyword for which URL handler should
be invoked for this URL pattern.

The next dict entry, funcs, is a dict that translates those
keywords into the class of the web module. In our example, we are translating
the keyword, echo, into the class, EchoHandler.

Enabling the module

Now that we’ve finished with the code, we need to add our new module to the
modules option in the [web] section of our configuration file. If
we saved our script as echo.py in the webmodules subdirectory of our
x/84 system’s script path, we would use the name echo to refer to it
in the configuration file:

[web]
; other configuration here
modules = echo

Next, we will have to restart x/84 in order for the module to be loaded.

Testing the module

Now, if we visit https://123.123.123.123:8443/echo/test in our web browser,
we will see:

test

And if we visit https://123.123.123.123:8443/echo in our web browser, we
will see:

I can't hear you!

Take it further

This is a very simple example. For a bit more advanced functionality, look at
the source of the :module:`x84.default.webmodules.oneliners` and
:module:`x84.default.webmodules.lastcallers` modules. To take it a step
further still, consider looking at the :module:`x84.webmodules.msgserve`
module in the x/84 server code.

Developers

The x/84 telnet system is written in the Python [http://www.python.org/] programming language. With
prior programming experience you should be able to pick up the language quickly
by looking at the provided sample mods in the x84/default folder. If you
are completely new to Python [http://www.python.org/], it’s recommended to read more about the
language, maybe browse the free Dive Into Python [http://www.diveintopython.net/] book by Mark Pilgrim.

Requirements

The following is step-by-step instructions for creating a developer environment
for making your own customizations of x/84’s engine and api and building your
own 'scriptpath' (defined by ~/.x84/default.ini). You may also simply
install x/84 using pip [http://guide.python-distribute.org/installation.html#installing-pip].

Debian, Ubuntu, Mint

You should install the following packages:

$ sudo apt-get install build-essential git libffi-dev libssl-dev python-dev python-setuptools python-pip python-virtualenv virtualenvwrapper

And please make sure you’re using an up-to-date version of pip:

$ sudo pip-2.7 --upgrade pip

Arch Linux

You should install the following packages:

$ sudo pacman -S gcc git libffi python2 python2-pip python2-virtualenv python-virtualenvwrapper python2-pyopenssl

And please make sure you’re using an up-to-date version of pip:

$ sudo pip-2.7 --upgrade pip

Virtualenv

Optional but recommended, using virtualenv and/or virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] ensures
you can install x/84 and its dependencies without root access and quickly
activate the environment at any time, but without affecting system libraries
or other python projects.

	Load virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]:

. `which virtualenvwrapper.sh`

There are techniques to automatically load virtualenvwrapper
from your shell profile, or to active a virtualenv when
you change to a project folder. See virtualenv tips and tricks [http://virtualenvwrapper.readthedocs.org/en/latest/tips.html#automatically-run-workon-when-entering-a-directory]
if you’re interested.

	Make a virtualenv (named ‘x84’) using python version 2.7:

mkvirtualenv -p `which python2.7` x84

Anytime you want to load x/84 environment in a new login shell,
source virtualenvwrapper.sh (as in step #2) and activate using
command:

workon x84

Install editable version

Instead of installing x84 as a complete package, we use pip to install
an editable version – this is so that when a modification is done to the
files in our local project directory, they are immediately reflected in the
x84 server anytime the virtualenv is activated:

pip install --editable .[with_crypto]

Starting x/84

x84

As another user

When installing x84 as an editable version inside a virtualenv, some
care must be taken in regards to using sudo and privbind. This is the
method used by the default board:

PYTHON_EGG_CACHE=/tmp/.python-eggs sudo privbind -u nobody -g nogroup `which python` -mx84.engine

The \`which python\` ensures the vitualenv-activated python version
of the current user is used, and instead of running the x84 script
which would be not be found in the system path of target user nobody,
we instead load the x84.engine module directly.

x84 Usage

Optional command line arguments,

--config= alternate bbs configuration filepath

--logger= alternate logging configuration filepath

By default these are, in order of preference: /etc/x84/default.ini
and /etc/x84/logging.ini, or ~/.x84/default.ini and
~/.x84/logging.ini.

Customizing your board

The default.ini file option, scriptpath, of section [system], defines folder 'default/', containing the scripts documented in this section. scriptpath accepts a comma delimited list of directories in which to store your customizations. Noting that the left most entry is of the highest preference.

For example.

scriptpath = /opt/bbs/scripts,/usr/local/src/x84/x84/default

x84 searches for scripts in /opt/bbs/scripts first and then /usr/local/src/x84/x84/default. This allows you to keep any customizations outside of the main source tree and then fall back to x84 defaults if they’re not present in your customizations directory.

Additional scripts can be found at https://github.com/x84-extras

This folder may be changed to a folder of your own choosing, and populated with your own scripts. A good start would be to copy the default/ folder, or even perform a checkout from github.

By default, matrix.py is called on-connect, with variations for sftp and ssh as matrix_sftp.py and matrix_ssh.py set by the default.ini file option script of section [matrix]. This script calls out to nua.py for new account creation, top.py when authenticated, and main.py for a main menu.

main(), gosub, and goto

All scripts to be called by goto or gosub must supply a main function. Keyword and positional arguments are allowed.

If a script fails due to import or runtime error, the exception is caught, (optionally displayed by default.ini option show_traceback), and the previous script is re-started.

If a script returns, and was called by gosub, the return value is returned by gosub.

If a script returns, and was called by goto, the session ends and the client is disconnected.

Basic example

Let’s start with a bare minimum mod, that just shows a hello world-style
welcome to the user:

def main():
 from x84.bbs import echo, getterminal
 term = getterminal()
 echo(term.bold_red(u'Hello, scene!\r\n'))
 echo(u'Press a key to continue...')
 term.inkey()

So what happens here?

def main():

This is the main entry point for your mod, as called by the previous gosub or
goto call. If you supply additional arguments to either of the two, they will
be passed as-is to the function invocation. We have no arguments in this
example.

from x84.bbs import ...

x/84 encourages to do runtime imports, so you can change most parts of the
system at runtime, without having the need to restart the whole system. Also,
some of the logic is available to the local thread only, and should not leak
into the global Python scope.

echo(...)

As you may have guessed, the echo function prints text on the user’s
terminal. Notice that we use unicode strings here. The BBS engine knows a lot
about the user’s terminal capabilities, including its encoding. So offering
everything encoded as unicode, the engine can translate to the correct
encoding for each client.

term.bold_red(...)

We use blessed [http://pypi.python.org/pypi/blessed] to display the given text in bold_red using whichever special
terminal attributes are defined by the clients TERM setting.

term.inkey()

Retrieves a single keystroke from the user’s terminal. If the key stroke was a
normal alphanumeric key, you will receive a single character that was typed as
unicode, otherwise you’ll get the full multibyte string, such as \x1b[A for
the up arrow – a code attribute is available that can be compared with
complimentary attributes of the term instance. See blessed [http://pypi.python.org/pypi/blessed] for details.

Engine

x84.engine

Command-line launcher and event loop for x/84.

	
x84.engine.accept(log, server, check_ban)

	Accept new connection from server, spawning an unmanaged thread.

Connecting socket accepted is server.server_socket, instantiate a
new instance of client_factory, with optional keyword arguments
defined by server.client_factory_kwargs, registering it with
dictionary server.clients, and spawning an unmanaged thread
using connect_factory, with optional keyword arguments
server.connect_factory_kwargs.

	
x84.engine.client_recv(servers, ready_fds, log)

	Test all clients for recv_ready().

If any data is available, then client.socket_recv() is called,
buffering the data for the session which is exhausted by
session_send().

	
x84.engine.client_send(terminals, log)

	Test all clients for send_ready().

If any data is available, then tty.client.send() is called.
This is data sent from the session to the tcp client.

	
x84.engine.find_server(servers, fd)

	Find matching server.server_socket for given file descriptor.

	
x84.engine.get_servers(CFG)

	Instantiate and return enabled servers by configuration CFG.

	
x84.engine.get_session_output_fds(servers)

	Return file descriptors of all tty.master_read pipes.

	
x84.engine.handle_lock(locks, tty, event, data, tap_events, log)

	handle locking event of (lock-key, (method, stale)).

	
x84.engine.main()

	x84 main entry point. The system begins and ends here.

Command line arguments to engine.py:

	--config= location of alternate configuration file

	--logger= location of alternate logging.ini file

	
x84.engine.session_recv(locks, terminals, log, tap_events)

	Receive data waiting for terminal sessions.

All data received from subprocess is handled here.

	
x84.engine.session_send(terminals)

	Test all tty clients for input_ready().

Meaning, tcp data has been buffered to be received by the tty session,
and send it to the tty input queue (tty.master_write). Also, test all
sessions for idle timeout, signaling exit to subprocess when reached.

x84.db

Database request handler for x/84.

	
class x84.db.DBHandler(queue, event, data)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

This handler receives and handles a dictionary-based “database command”.

See complimenting x84.bbs.dbproxy.DBProxy, which behaves as a
dictionary and “packs” command iterables through an IPC event queue which
is then dispatched by the engine.

The return values are sent to the session queue with equal ‘event’ name.

Class initializer.

	Parameters

	
	queue (multiprocessing.Pipe) – parent input end of a tty session
ipc queue (tty.master_write).

	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – database schema in form of string 'db-schema'
or 'db=schema'. When '-' is used, the result
is returned as a single transfer. When '=', an
iterable is yielded and the data is transfered via
the IPC Queue as a stream.

	data (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a dict method proxy command sequence in form of
(table, command, arguments). For example,
``(‘unnamed’, ‘pop’, 0).

	
run()

	Execute database command and return results to session queue.

	
x84.db.check_db(filepath)

	Verify permission access of given database file.

	Raises

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – file or folder is not writable.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – could not write containing folder.

	
x84.db.get_database(filepath, table)

	Return sqlitedict.SqliteDict instance for given database.

	
x84.db.get_db_filepath(schema)

	Return filesystem path of given database schema.

	
x84.db.get_db_func(dictdb, cmd)

	Return callable function of method on dictdb.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – not a valid method or not callable.

	
x84.db.get_db_lock(schema, table)

	Return database lock for given (schema, table).

	
x84.db.log_db_cmd(log, schema, cmd, args)

	Log database command (when tap_db ini option is used).

	
x84.db.parse_dbevent(event)

	Parse a database event into (iterable, schema).

Called by class initializer, to determine if the event should return
an iterable, and for what database name (schema).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Protocols

x84.server

Package provides base server for x/84.

	
class x84.server.BaseServer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for server implementations.

	
LISTEN_BACKLOG = 5

	Number of clients that can wait to be accepted

	
MAX_CONNECTIONS = 100

	Maximum number of clients

	
client_count()

	Return number of active connections.

	
client_factory = None

	Client factory should be a class defining what should be instantiated
for the client instance.

	
classmethod client_factory_kwargs(instance)

	Return keyword arguments for the client_factory.

Method should be derived and modified, A dictionary may be substituted.
The default return value is an empty dictionary.

:rtype dict

	
client_fds()

	Return list of client file descriptors.

	
client_list()

	Return list of connected clients.

	
clients = {}

	Dictionary of active clients, (file descriptor, Client, …)

	
clients_ready(ready_fds=None)

	Return list of clients with data ready to be receive.

	Parameters

	ready_fds (list [https://docs.python.org/3/library/stdtypes.html#list]) – file descriptors already known to be ready

	
connect_factory = None

	Connect factory should be a class, derived from threading.Thread, that
should be instantiated on-connect to perform negotiation and launch the
bbs session upon success.

	
classmethod connect_factory_kwargs(instance)

	Return keyword arguments for the connect_factory.

Method should be derived and modified, A dictionary may be substituted.
The default return value is an empty dictionary.

:rtype dict

	
env = {}

	Dictionary of environment variables received by negotiation

	
threads = []

	List of on-connect negotiating threads.

x84.client

Base classes for clients and connections of x/84.

	
class x84.client.BaseClient(sock, address_pair, on_naws=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for remote client implementations.

Instantiated by the corresponding BaseServer class.

Class initializer.

	
BLOCKSIZE_RECV = 64

	maximum unit of data received for each call to socket_recv()

	
TTYPE_UNDETECTED = 'unknown'

	terminal type identifier when not yet negotiated

	
addrport

	IP address and port of connection as string (ip:port).

	
close()

	Close connection with the client.

	
deactivate()

	Flag client for disconnection by engine loop.

	
duration()

	Time elapsed since connection was made.

	
fileno()

	File descriptor number of socket.

	
get_input()

	Receive input from client into self.recv_buffer.

Should be called conditionally when input_ready() returns True.

	
idle()

	Time elapsed since data was last received.

	
input_ready()

	Whether any data is buffered for reading.

	
is_active()

	Whether this connection is active (bool).

	
kind = None

	Override in subclass: a general string identifier for the
connecting protocol (for example, ‘telnet’, ‘ssh’, ‘rlogin’)

	
recv_ready()

	Subclass and implement: whether socket_recv() should be called.

:raises NotImplementedError

	
send()

	Send any data buffered and return number of bytes send.

	Raises

	Disconnected – client has disconnected (cannot write to socket).

	
send_ready()

	Whether any data is buffered for delivery.

	
send_str(bstr)

	Buffer bytestring for client.

	
send_unicode(ucs, encoding='utf8')

	Buffer unicode string, encoded for client as ‘encoding’.

	
shutdown()

	Shutdown and close socket.

Called by event loop after client is marked by deactivate().

	
socket_recv()

	Receive data from socket, returns number of bytes received.

	Raises

	Disconnect – client has disconnected.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class x84.client.BaseConnect(client)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

Base class for client connect factories.

Class initializer.

	
banner()

	Write data on-connect, callback from run().

	
run()

	Negotiate a connecting session.

In the case of telnet and ssh, for example, negotiates and
inquires about terminal type, telnet options, window size,
and tcp socket options before spawning a new session.

	
stopped = False

	whether this thread is completed. Set to True to cause an on-connect
thread to forcefully exit.

x84.telnet

Telnet server for x84.

Limitations:

	No linemode support, character-at-a-time only.

	No out-of-band / data mark (DM) / sync supported

	No flow control (^S, ^Q)

This is a modified version of miniboa retrieved from svn address
http://miniboa.googlecode.com/svn/trunk/miniboa which is meant for
MUD’s. This server would not be safe for most (linemode) MUD clients.

Changes from miniboa:

	character-at-a-time input instead of linemode

	encoding option on send

	strict rejection of linemode

	terminal type detection

	environment variable support

	GA and SGA

	utf-8 safe

	
class x84.telnet.ConnectTelnet(client)

	Bases: x84.client.BaseConnect

Accept new Telnet Connection and negotiate options.

Class initializer.

	
TIME_NEGOTIATE = 2.5

	maximum time elapsed allowed to begin on-connect negotiation

	
TIME_POLL = 0.1

	polling duration during negotiation

	
TIME_WAIT_STAGE = 3.5

	wait upto 3500ms for all stages of negotiation to complete

	
banner()

	This method is called after the connection is initiated.

This routine happens to communicate with a wide variety of network
scanners when listening on the default port on a public IP address.

	
run()

	Negotiate and inquire about terminal type, telnet options, window size,
and tcp socket options before spawning a new session.

	
class x84.telnet.TelnetClient(sock, address_pair, on_naws=None)

	Bases: x84.client.BaseClient

Represents a remote Telnet Client, instantiated from TelnetServer.

	
SB_MAXLEN = 65534

	maximum size of telnet subnegotiation string, allowing for a fairly
large value for NEW_ENVIRON.

	
check_local_option(option)

	Test the status of local negotiated Telnet options.

	
check_remote_option(option)

	Test the status of remote negotiated Telnet options.

	
recv_ready()

	Returns True if data is awaiting on the telnet socket.

	
request_do_binary()

	Tell the DE that we would like them to input binary 8-bit (utf8).

	
request_do_env()

	Request to Negotiate About Window Size. See RFC 1073.

	
request_do_naws()

	Request to Negotiate About Window Size. See RFC 1073.

	
request_do_sga()

	Request to Negotiate SGA. See …

	
request_do_ttype()

	Begins TERMINAL-TYPE negotiation

	
request_env()

	Request sub-negotiation NEW_ENVIRON. See RFC 1572.

	
request_ttype()

	Sends IAC SB TTYPE SEND IAC SE

	
request_will_binary()

	Tell the DE that we would like to use binary 8-bit (utf8).

	
request_will_echo()

	Tell the DE that we would like to echo their text. See RFC 857.

	
request_will_sga()

	Request DE to Suppress Go-Ahead. See RFC 858.

	
send_unicode(ucs, encoding='utf8')

	Buffer unicode string, encoded for client as ‘encoding’.

	
socket_recv()

	Called by TelnetServer.poll() when recv data is ready. Read any
data on socket, processing telnet commands, and buffering all
other bytestrings to self.recv_buffer. If data is not received,
or the connection is closed, x84.bbs.exception.Disconnected is
raised.

	
class x84.telnet.TelnetOption

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple class used to track the status of an extended Telnet option.

Attributes and their state values:

	local_option: UNKNOWN (default), True, or False.

	remote_option: UNKNOWN (default), True, or False.

	reply_pending: True or Fale.

Set attribute defaults on init.

	
class x84.telnet.TelnetServer(config)

	Bases: x84.server.BaseServer

Poll sockets for new connections and sending/receiving data from clients.

Create a new Telnet Server.

	Parameters

	config (ConfigParser.ConfigParser) – configuration section
[telnet], with options 'addr', 'port'

	
client_factory

	alias of TelnetClient

	
connect_factory

	alias of ConnectTelnet

	
x84.telnet.debug_option(func)

	This function is a decorator that debug prints the ‘from’ address for
callables decorated with this. This helps during telnet negotiation, to
understand which function sets or checks local or remote option states.

	
x84.telnet.name_option(option)

	Perform introspection of global CONSTANTS for equivalent values,
and return a string that displays its possible meanings

x84.ssh

x84.rlogin

rlogin server for x84.

This only exists to demonstrate alternative client protocols rather than
only ssh or telnet. rlogin is a very insecure and not recommended!

	
class x84.rlogin.ConnectRLogin(client)

	Bases: x84.client.BaseConnect

rlogin protocol connection handler.

Takes care of the (initial) handshake, terminal and session setup.

Class initializer.

	
TIME_NEGOTIATE = 5.0

	maximum time elapsed allowed for on-connect negotiation

	
TIME_POLL = 0.1

	poll interval for on-connect negotiation

	
apply_environment(parsed)

	Cherry-pick rlogin values into client environment variables.

	Parameters

	parsed (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – values identified by class method
parse_connect_data()

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_connect_data()

	Receive four null-terminated strings transmitted by client on-connect.

	Returns

	bytes received, containing at least 4 NUL-terminated strings.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – on-connect data timeout or bandwidth exceeded.

	
parse_connect_data(data)

	Parse and return raw data received by client on-connect.

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – bytes received by class method get_connect_data().

	Returns

	dictionary containing pertinent key/values

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
run()

	Perform rfc1282 (rlogin) connection establishment.

Determine rlogin on-connect data, rlogin may only
negotiate session user name and terminal type.

	
class x84.rlogin.RLoginClient(sock, address_pair, on_naws=None)

	Bases: x84.client.BaseClient

rlogin protocol client handler.

	
recv_ready()

	Whether data is awaiting on the telnet socket.

	
send()

	Send any data buffered and return number of bytes send.

	Raises

	Disconnected – client has disconnected (cannot write to socket).

	
send_ready()

	Whether any data is buffered for delivery.

	
send_urgent_str(bstr)

	Buffer urgent (OOB) message to client from bytestring.

	
class x84.rlogin.RLoginServer(config)

	Bases: x84.server.BaseServer

RLogin/RSH protocol server.

Class initializer.

	
client_factory

	alias of RLoginClient

	
client_fds()

	Return list of rlogin client file descriptors.

	
connect_factory

	alias of ConnectRLogin

x84.sftp

x84.webserve

Service Plugins

x84.fail2ban

fail2ban module for x/84.

To enable, add to default.ini:

[fail2ban]
enabled = yes

The following options are available, but not required:

	ip_blacklist: space-separated list of IPs on permanent blacklist.

	ip_whitelist: space-separated list of IPs to always allow.

	max_attempted_logins: max no. of logins allowed for given time window

	max_attempted_logins_window: the length (in seconds) of the time window
for which logins will be tracked (sliding scale).

	initial_ban_length: ban length (in seconds) when an IP is blacklisted.

	ban_increment_length: amount of time (in seconds) to add to a ban on
subsequent login attempts

	
x84.fail2ban.get_fail2ban_function()

	Return a function used to ban aggressively-connecting clients.

This is analogous to the ‘fail2ban’ utility, for example, telnet
or ssh connect scanners.

Returns a function which may be passed an IP address, returning True
if the connection from address ip should be accepted.

	Returns

	function accepting ip address, returning boolean

	Return type

	callable

x84.msgpoll

x84net message poll for x/84.

	
x84.msgpoll.do_poll(networks)

	Message polling process.

Function is called periodically by poller().

	
x84.msgpoll.get_last_msg_id(last_file)

	Get the “last message id” by data file last_file.

	
x84.msgpoll.get_networks()

	Get list configured message networks.

	
x84.msgpoll.get_token(network)

	get token for authentication

	
x84.msgpoll.main(background_daemon=True)

	Entry point to configure and begin network message polling.

Called by x84/engine.py, function main() as unmanaged thread.

	Parameters

	background_daemon (bool [https://docs.python.org/3/library/functions.html#bool]) – When True (default), this function returns
and web modules are served in an unmanaged, background (daemon)
thread. Otherwise, function call to main() is blocking.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
x84.msgpoll.poll_network_for_messages(net)

	Poll for new messages of network, net.

	
x84.msgpoll.poller(poll_interval)

	Blocking function periodically polls configured message networks.

	
x84.msgpoll.prepare_message(msg, network, parent)

	turn a Msg object into a dict for transfer

	
x84.msgpoll.publish_network_messages(net)

	Push messages to network, net.

	
x84.msgpoll.pull_rest(net, last_msg_id)

	pull messages for a given network newer than the ‘last’ message idx

	
x84.msgpoll.push_rest(net, msg, parent)

	push message for a given network and append an origin line

Terminal I/O

x84.terminal

Terminal handler for x/84

	
class x84.terminal.Terminal(kind, stream, rows, columns)

	Bases: blessed.terminal.Terminal

A thin wrapper over blessed.Terminal.

Class initializer.

	
cbreak(**kwds)

	Dummy method yields nothing for blessed compatibility.

	
getch()

	Read, decode, and return the next byte from the keyboard stream.

	Return type

	unicode

	Returns

	a single unicode character, or u'' if a multi-byte
sequence has not yet been fully received.

This method name and behavior mimics curses getch(void), and
it supports inkey(), reading only one byte from
the keyboard string at a time. This method should always return
without blocking if called after kbhit() has returned True.

Implementors of alternate input stream methods should override
this method.

	
inkey(timeout=None, esc_delay=0.35, *_)

	Read and return the next keyboard event within given timeout.

Generally, this should be used inside the raw() context manager.

	Parameters

	
	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Number of seconds to wait for a keystroke before
returning. When None (default), this method may block
indefinitely.

	esc_delay (float [https://docs.python.org/3/library/functions.html#float]) – To distinguish between the keystroke of
KEY_ESCAPE, and sequences beginning with escape, the parameter
esc_delay specifies the amount of time after receiving escape
(chr(27)) to seek for the completion of an application key
before returning a Keystroke instance for
KEY_ESCAPE.

	Return type

	Keystroke.

	Returns

	Keystroke, which may be empty (u'') if
timeout is specified and keystroke is not received.

Note

When used without the context manager cbreak(), or
raw(), sys.__stdin__ [https://docs.python.org/3/library/sys.html#sys.__stdin__] remains line-buffered, and this
function will block until the return key is pressed!

	
is_a_tty

	Dummy property always returns True.

	
kbhit(timeout=0, *_)

	Return whether a keypress has been detected on the keyboard.

This method is used by inkey() to determine if a byte may
be read using getch() without blocking. The standard
implementation simply uses the select.select() [https://docs.python.org/3/library/select.html#select.select] call on stdin.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – When timeout is 0, this call is
non-blocking, otherwise blocking indefinitely until keypress
is detected when None (default). When timeout is a
positive number, returns after timeout seconds have
elapsed (float).

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if a keypress is awaiting to be read on the keyboard
attached to this terminal. When input is not a terminal, False is
always returned.

	
raw(**kwds)

	Dummy method yields nothing for blessed compatibility.

	
session

	Session associated with this terminal.

	
set_keyboard_decoder(encoding)

	Set or change incremental decoder for keyboard input.

	
class x84.terminal.TerminalProcess(client, sid, master_pipes)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class record for tracking “terminals”.

Probably of most interest, is that a TerminalProcess
is an abstract association with a multiprocessing.Process
sub-process, and its i/o queues (master_pipes).

This is not a really tty, or even a pseudo-tty (pty)! No
termios, fnctl, or any terminal driver i/o is performed, it
is all virtual.

An instance of this class is stored using register_tty()
and removed by unregister_tty(), and discovered using
get_terminals().

Class constructor.

	
x84.terminal.determine_encoding(env)

	Determine and return preferred encoding given session env.

	
x84.terminal.find_tty(client)

	Given a client, return a matching tty, or None if not registered.

	
x84.terminal.flush_queue(queue)

	Flush all data awaiting on the ipc queue.

Seeks any remaining events in queue, used before closing
to prevent zombie processes with IPC waiting to be picked up.

	
x84.terminal.get_terminals()

	Returns a list of all terminals as tuples (session-id, ttys).

	
x84.terminal.init_term(writer, env)

	Determine the final TERM and encoding and return a Terminal.

curses is initialized using the value of ‘TERM’ of dictionary env,
as well as a starting window size of ‘LINES’ and ‘COLUMNS’. If the
terminal-type is of ‘ansi’ or ‘ansi-bbs’, then the cp437 encoding
is assumed; otherwise ‘utf8’.

A blessed-abstracted curses terminal is returned.

	
x84.terminal.kill_session(client, reason='killed')

	Given a client, shutdown its socket and signal subprocess exit.

	
x84.terminal.on_naws(client)

	Callback for telnet NAWS negotiation.

On a Telnet NAWS sub-negotiation, check if client is yet registered
in registry, and if so, send a ‘refresh’ event down the event queue.

This is ultimately handled by x84.bbs.session.Session.buffer_event().

	
x84.terminal.register_tty(tty)

	Register a TerminalProcess instance.

	
x84.terminal.spawn_client_session(client, matrix_kwargs=None)

	Spawn sub-process for connecting client.

Optional

	
x84.terminal.start_process(sid, env, CFG, child_pipes, kind, addrport, matrix_args=None, matrix_kwargs=None)

	A multiprocessing.Process target.

	Parameters

	
	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) – string describing session source (IP address & port).

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of client environment variables
(must contain at least 'TERM').

	CFG (ConfigParser.ConfigParser) – bbs configuration

	child_pipes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple of (writer, reader) for engine IPC.

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – what kind of connection as string, 'telnet',
'ssh', etc.

	addrport (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – (client-ip, client-port) as string and integer.

	matrix_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – optional positional arguments to pass to matrix
script.

	matrix_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – optional keyward arguments to pass to matrix
script.

	
x84.terminal.translate_ttype(ttype)

	Return preferred terminal type given the session-negotiation ttype.

This provides a kind of coercion; we know some terminals, such as
SyncTerm report a terminal type of ‘ansi’ – however, the author
publishes a termcap database for ‘ansi-bbs’ which he instructs
should be used! So an [system] configuration item
of termcap-ansi may be set to 'ansi-bbs' to coerce
such terminals for Syncterm-centric telnet servers – though I
would not recommend it.

Furthermore, if the ttype is (literally) ‘unknown’, then a
system-wide default terminal type may be returned, also by
[system] configuration option termcap-unknown.

	
x84.terminal.unregister_tty(tty)

	Unregister a TerminalProcess instance.

Userland/scripting API

x84.bbs.door

Door package for x/84.

This implements the concept of “Doors”, popular for DOS BBS software.

It also supports executing external Unix paths. See wikipedia article
for details: http://en.wikipedia.org/wiki/BBS_door

	
class x84.bbs.door.DOSDoor(cmd='/bin/uname', args=(), env=None, cp437=True)

	Bases: x84.bbs.door.Door

Door-derived class with special handlers for executing dosemu.

This Door-derived class removes the “report cursor position” query
sequence, which is sent by DOSEMU on startup. It also removes the “switch
to alternate screen mode” set and reset (blessings terminals provide this
with the context manager, using statement with term.fullscreen():).

It would appear that any early keyboard input received (esp. in response
to “report cursor position”) prior to DOOR execution in DOSEMU causes all
input to be bitshifted and invalid and/or broken.

This class resolves that issue by overriding output_filter to remove
such sequences, and input_filter which only allows input after a few
seconds have elapsed.

Class initializer.

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – full path of command to execute.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – command arguments as tuple.

	cp437 (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, forces decoding of external program as
codepage 437. This is the most common encoding used
by DOS doors.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to extend to the sub-process.
You should more than likely specify values for TERM,
PATH, HOME, and LANG.

	
RE_REPWITH_CLEAR = '\\033\\[(1;80H.*\\033\\[1;1H|H\\033\\[2J|\\d+;1H.*\\033\\[1;1H)'

	regular expression of sequences to be replaced by term.clear
during START_BLOCK delay in output_filter

	
RE_REPWITH_NONE = '\\033\\[(6n|\\?1049[lh]|\\d+;\\d+r|1;1H\\033\\[\\dM)'

	regular expression of sequences to strip entirely during
START_BLOCK delay in output_filter.

	
START_BLOCK = 4.0

	Number of seconds to allow to elapse for input_filter and
output_filter as a workaround for stripping startup sequences
and working around a strange keyboard input bug.

	
input_filter(data)

	filter keyboard input (used for “throway” bug workaround).

	
output_filter(data)

	filter screen output (removes dosemu startup sequences).

	
resize()

	Signal resize of terminal to DOS – does nothing.

	
run()

	Begin door execution.

pty.fork() is called, child process calls execvpe() while the parent
process pipes telnet session IPC data to and from the slave pty until
child process exits.

On exit, DOSDoor flushes any keyboard input; DOSEMU appears to send
various terminal reset sequences that may cause a reply to be received
on input, and later as an invalid menu command.

	
class x84.bbs.door.Door(cmd='/bin/uname', args=(), env=None, cp437=False, raw=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Spawns a subprocess and pipes input and output over bbs session.

Class initializer.

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – full path of command to execute.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – command arguments as tuple.

	cp437 (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, forces decoding of external program as
codepage 437. This is the most common encoding used
by DOS doors.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to extend to the sub-process.
You should more than likely specify values for TERM,
PATH, HOME, and LANG.

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use raw output

	
input_filter(data)

	Derive and modify to implement a keyboard-input filter.

When keyboard input is detected, this method may filter such input.
This base class method simply returns data as-is.

	
output_filter(data)

	Filter output (performs cp437 encoding).

Given door output in bytes, if ‘cp437’ is specified in class
initializer, convert to utf8 glyphs using cp437 encoding;
otherwise decode output naturally as utf8.

	
resize()

	Signal resize of terminal to pty.

	
run()

	Begin door execution.

pty.fork() is called, child process calls execvpe() while the parent
process pipes session IPC data to and from the slave pty, until the
child process exits.

	
class x84.bbs.door.Dropfile(filetype=None, node=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Dropfile export class.

From http://en.wikipedia.org/wiki/BBS_door

> the 1990s on, most BBS software had the capability to “drop to” doors.
> Several standards were developed for passing connection and user
> information to doors; this was usually done with “dropfiles”, small
> binary or text files dropped into known locations in the BBS’s file
> system.

Class initializer.

	Parameters

	
	filetype (int [https://docs.python.org/3/library/functions.html#int]) – dropfile type. One of Dropfile.DOORSYS,
Dropfile.DOOR32, Dropfile.CALLINFOBBS,
or Dropfile.DORINFO.

	node (int [https://docs.python.org/3/library/functions.html#int]) – A node number specified by caller; for some DOS
doors, this is a very specific and limited number
bounded and lock-acquired per-door by sesame.py.
For others, it is inconsequential, in which case
the session’s system-wide node number is used.

	
CALLINFOBBS = 2

	Dropfile type constants

	
DOOR32 = 1

	Dropfile type constants

	
DOORSYS = 0

	Dropfile type constants

	
DORINFO = 3

	Dropfile type constants

	
alias

	current session’s handle.

	
comhandle

	Com handle (always returns 0).

	
comport

	Com port (always returns COM1).

	
comspeed

	Com speed (always returns 57600).

	
comtype

	Com type (always returns 0).

	
filename

	Filename of given dropfile.

	
fullname

	User fullname. Returns <handle> <handle>.

	
lastcall_date

	Date of last call (format is %m/%d/%y).

	
lastcall_time

	Time of last call (format is %H:%M).

	
location

	User location.

	
node

	User’s node number.

	
numcalls

	Number of calls by user.

	
pageheight

	Terminal height.

	
parity

	Data parity.

	
password

	Password of user.

	
remaining_mins

	Remaining minutes (always returns 256).

	
remaining_secs

	Remaining seconds (always returns 15360).

	
save(folder)

	Save dropfile to destination folder.

	
securitylevel

	User security level. Always 30, or 100 for sysop.

	
sysopname

	name of sysop.

	
systemname

	BBS System name.

	
time_used

	Time used (session duration) in seconds.

	
usernum

	User record number.

	
xferprotocol

	preferred transfer protocol.

x84.bbs.editor

Editor package for x/84.

	
class x84.bbs.editor.LineEditor(width=None, content=u'', hidden=False, colors=None, glyphs=None, keyset=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This unicode line editor is unaware of its (y, x) position.

It is great for prompting a quick phrase on any terminal,
such as a login: prompt.

Class initializer.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – the maximum input length.

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – given default content.

	hidden (str [https://docs.python.org/3/library/stdtypes.html#str]) – When non-False, a single ‘mask’ character for output.

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – optional dictionary containing key ‘highlight’.

	glyphs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – optional dictionary of window border characters.

	keyset (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – optional dictionary of line editing values.

	
carriage_returned

	Whether the carriage return character has been handled.

	
hidden

	When non-False, a single ‘mask’ character for hiding input.

Used by password prompts.

	
init_keystrokes(keyset)

	Sets keyboard keys for various editing keystrokes.

	
init_theme(colors=None, glyphs=None, hidden=False)

	Set color, bordering glyphs, and hidden attribute theme.

	
process_keystroke(keystroke)

	Process the keystroke and return string to refresh.

	Parameters

	keystroke (blessed.keyboard.Keystroke) – input from inkey().

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	string sequence suitable for refresh.

	
quit

	Whether a ‘quit’ character has been handled, such as escape.

	
read()

	Reads input until the ENTER or ESCAPE key is pressed (Blocking).

Allows backspacing. Returns unicode text, or None when canceled.

	
refresh()

	Return string sequence suitable for refreshing editor.

No movement or positional sequences are returned.

	
width

	Limit of characters to receive on input.

	
x84.bbs.editor.PC_KEYSET = {'backspace': [u'\x08', u'\x7f'], 'backword': [u'\x17'], 'enter': [u'\r'], 'exit': [u'\x1b'], 'refresh': [u'\x0c']}

	default command-key mapping.

	
class x84.bbs.editor.ScrollingEditor(*args, **kwargs)

	Bases: x84.bbs.ansiwin.AnsiWindow

A single line Editor, requires absolute (yloc, xloc) position.

Infinite horizontal scrolling is enabled or limited using max_length.

Class initializer.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – width of window.

	yloc (int [https://docs.python.org/3/library/functions.html#int]) – y-location of window.

	xloc (int [https://docs.python.org/3/library/functions.html#int]) – x-location of window.

	max_length (int [https://docs.python.org/3/library/functions.html#int]) – maximum length of input (even when scrolled).

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – color theme.

	glyphs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – bordering window character glyphs.

	keyset (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – command keys, global PC_KEYSET is default.

	
add(u_chr)

	Return output sequence of changes after adding a character to editor.

An empty string is returned if no data could be inserted. Sequences for
re-displaying the full input line are returned when the character
addition caused the window to scroll horizontally.

Otherwise, the input is simply returned to be displayed.

	
backspace()

	Remove character from end of buffer, scroll as necessary.

	
backword()

	Delete word behind cursor, using ‘ ‘ as boundary.

In gnu-readline this is unix-word-rubout (C-w).

	
bell

	Whether the user has neared the margin.

	
carriage_returned

	Whether the carriage return character has been handled.

	
content

	The contents of the editor.

	
eol

	Whether more input may be accepted (end of line reached).

	
fixate(x_adjust=0)

	Return string sequence suitable for “fixating” cursor position.

Set x_adjust to -1 to position cursor ‘on’ the last character,
or 0 for ‘after’ (default).

	
init_keystrokes(keyset)

	Sets keyboard keys for various editing keystrokes.

	
init_theme(colors=None, glyphs=None)

	Set color and bordering glyphs theme.

	
is_scrolled

	Whether the horizontal editor is in a scrolled state.

	
margin_amt

	Absolute number of columns from margin until bell is signaled.

Indicating that the end is near and the carriage should be soon
returned.

	
margin_pct

	Percentage of visible width from-end until bell is signaled.

Number of columns away from input length limit, as a percentage of its
total visible width, that will alarm the bell. This simulates the bell
of a typewriter as a signaling mechanism. Default is 10.

Unofficially intended for a faked multi-line editor: by using the bell
as a wrap signal to instantiate another line editor and
‘return the carriage’.

	
max_length

	Maximum line length.

This also limits infinite scrolling when enable_scrolling is True.
When unset, the maximum length is infinite!

	
position

	Tuple of shift amount and column position of line editor.

	
process_keystroke(keystroke)

	Process the keystroke and return string to refresh.

	Parameters

	keystroke (blessed.keyboard.Keystroke) – input from inkey().

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	string sequence suitable for refresh.

	
quit

	Whether a ‘quit’ character has been handled, such as escape.

	
read()

	Reads input until the ENTER or ESCAPE key is pressed (Blocking).

Allows backspacing. Returns unicode text, or None when canceled.

	
refresh()

	Return string sequence suitable for refreshing editor.

A strange by-product; if scrolling was not previously enabled, it is if
wrapping must occur; this can happen if a non-scrolling editor was
provided a very large .content buffer, then later .refresh()’d. –
essentially enabling infinite scrolling.

	
scroll_amt

	Number of columns from-end until horizontal editor will scroll

Calculated by scroll_pct.

	
scroll_pct

	Percentage of visible width from-end until scrolling occurs.

Number of columns, as a percentage of its total visible width, that
will be scrolled when a user reaches the margin by percent. Default
is 25.

	
update(ucs=u'')

	Replace or reset content.

Resets properties carriage_returned and quit to False.

x84.bbs.ini

Configuration package x/84.

	
x84.bbs.ini.CFG = None

	Singleton representing configuration after load

	
x84.bbs.ini.get_ini(section=None, key=None, getter='get', split=False, splitsep=', ')

	Get an ini configuration of section and key.

If the option does not exist, an empty list, string, or False
is returned – return type decided by the given arguments.

The getter method is ‘get’ by default, returning a string.
For booleans, use getter='get_boolean'.

To return a list, use split=True.

	
x84.bbs.ini.init(lookup_bbs, lookup_log)

	Initialize global ‘CFG’ variable, a singleton to contain bbs settings.

Each variable (lookup_bbs, lookup_log) is tuple lookup path of
in-order preferences for .ini files. If none are found, defaults are
initialized, and the last item of each tuple is created.

	
x84.bbs.ini.init_bbs_ini()

	Returns ConfigParser instance of bbs system defaults.

	
x84.bbs.ini.init_log_ini()

	Return ConfigParser instance of logger defaults.

x84.bbs.ipc

Session IPC package for x/84.

	
class x84.bbs.ipc.IPCLogHandler(out_queue)

	Bases: logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler]

Log handler that sends the log up the ‘event pipe’.

This is a rather novel solution that seems overlooked in documentation,
a forked process must have some method to propagate its logging records
up through the main process, otherwise they are lost.

Constructor method, requires multiprocessing.Pipe.

	
emit(record)

	Emit log record via IPC output queue.

	
class x84.bbs.ipc.IPCStream(writer)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Connect blessed.Terminal argument ‘stream’ to ‘writer’ queue.

The writer queue is a multiprocessing.Pipe whose master-side
is polled for output in x84.engine. Only the write() method of
this “stream” and is_a_tty attribute is called or evaluated by
blessed.Terminal. The attribute is_a_tty is mocked as True.

	
write(ucs, encoding='ascii')

	Sends unicode text to Pipe.

Default encoding is ‘ascii’, which is unset only when used
with blessings, which rarely writes directly to the stream
(context managers, such as “with term.location(0, 0):” have
such side effects).

	
x84.bbs.ipc.make_root_logger(out_queue)

	Remove and re-address the root logging handler.

Any existing handlers of the current process are removed and
the root logger is re-address to send via an IPC output event
queue.

x84.bbs.lightbar

Lightbar package for x/84.

	
class x84.bbs.lightbar.Lightbar(*args, **kwargs)

	Bases: x84.bbs.ansiwin.AnsiWindow

This Windowing class offers a classic ‘lightbar’ interface.

Instantiate with yloc, xloc, height, and width, then call the update method
with a list of unicode strings. send keycodes to process_keystroke () to
interactive with the ‘lightbar’.

Class initializer.

Initialize a lightbar of height, width, y and x, and position.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – width of window.

	height (int [https://docs.python.org/3/library/functions.html#int]) – height of window.

	yloc (int [https://docs.python.org/3/library/functions.html#int]) – y-location of window.

	xloc (int [https://docs.python.org/3/library/functions.html#int]) – x-location of window.

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – color theme, only key value of highlight
is used.

	glyphs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – bordering window character glyphs.

	keyset (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – command keys, global NETHACK_KEYSET is
used by default, augmented by application
keys such as home, end, pgup, etc.

	content (list [https://docs.python.org/3/library/stdtypes.html#list]) – Lightbar content as list of tuples, an empty list
is used by default. Tuples must be in form of
(key, str). key may have any suitable
significance for the caller. str, however,
must be of a unicode terminal sequence.

	
at_bottom

	Whether current selection is pointed at final entry.

	
at_top

	Whether current selection is pointed at the first entry.

	
fixate()

	Return string sequence suitable for “fixating” cursor position.

	
goto(index)

	Move selection to given index.

	
index

	Selected index of self.content.

	
init_keystrokes(keyset)

	Sets keyboard keys for various editing keystrokes.

	
init_theme(colors=None, glyphs=None)

	Set color and bordering glyphs theme.

	
last_index

	Previously selected index of self.content.

	
move_down()

	Move selection down one row, return string suitable for refresh.

	
move_end()

	Move selection to final row, return string suitable for refresh.

	
move_home()

	Move selection to first row, return string suitable for refresh.

	
move_pagedown()

	Move selection down one page, return string suitable for refresh.

	
move_pageup()

	Move selection up one page, return string suitable for refresh.

	
move_up()

	Move selection up one row, return string suitable for refresh.

	
position

	Tuple pair (row, page).

row is the index from top of window, and ‘page’ is number of page
items scrolled.

	
process_keystroke(keystroke)

	Process the keystroke and return string to refresh.

	Parameters

	keystroke (blessed.keyboard.Keystroke) – input from inkey().

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	string sequence suitable for refresh.

	
quit

	Whether a ‘quit’ character has been handled, such as escape.

	
read()

	Reads input until the ENTER or ESCAPE key is pressed (Blocking).

Returns selection content, or None when canceled.

	
refresh()

	Return string sequence suitable for refreshing lightbar.

	
refresh_quick()

	Redraw only the ‘dirty’ portions after a ‘move’ has occurred.

	
refresh_row(row)

	Return string sequence suitable for refreshing current selection.

Return unicode byte sequence suitable for moving to location ypos of
window-relative row, and displaying any valid entry there, or using
glyphs[‘erase’] if out of bounds. Strings are ansi color safe, and
will be trimmed using glyphs[‘strip’] if their displayed width is
wider than window.

	
selected

	Whether carriage return was detected by process_keystroke.

	
selection

	Selected content of self.content by index.

	
update(keyed_uchars=None)

	Replace content with with sequence of (key, str).

key may have any suitable significance for the caller. str,
however, must be of a unicode terminal sequence.

	
visible_bottom

	Visible bottom-most item of lightbar.

	
visible_content

	Returns visible content only.

	
vitem_idx

	Relative visible item index within view.

Index of selected item relative by index to only the length of the list
that is visible, without accounting for scrolled content.

	
vitem_shift

	Index of top-most item in viewable window, non-zero when scrolled.

This value effectively represents the number of items not in view
due to paging.

	
x84.bbs.lightbar.NETHACK_KEYSET = {'down': [u'j'], 'end': [u'n', 'G'], 'enter': [u'\r'], 'exit': [u'q', u'Q', u'\x1b'], 'home': [u'y', '0'], 'pgdown': [u'l', u'f'], 'pgup': [u'h', u'b'], 'up': [u'k']}

	default command-key mapping.

x84.bbs.output

Terminal output package for x/84.

	
x84.bbs.output.RE_ANSI_COLOR = <_sre.SRE_Pattern object>

	simple regular expression for matching simple ansi colors,
for use by encode_pipe().

	
x84.bbs.output.SAUCE_FONT_MAP = {'Amiga MicroKnight': 'amiga', 'Amiga MicroKnight+': 'amiga', 'Amiga P0T-NOoDLE': 'amiga', 'Amiga Topaz 1': 'amiga', 'Amiga Topaz 1+': 'amiga', 'Amiga Topaz 2': 'amiga', 'Amiga Topaz 2+': 'amiga', 'Amiga mOsOul': 'amiga', 'Atari ATASCII': 'atari', 'IBM EGA': 'cp437', 'IBM EGA 437': 'cp437', 'IBM EGA 720': 'cp720', 'IBM EGA 737': 'cp737', 'IBM EGA 775': 'cp775', 'IBM EGA 819': 'cp819', 'IBM EGA 850': 'cp850', 'IBM EGA 852': 'cp852', 'IBM EGA 855': 'cp855', 'IBM EGA 857': 'cp857', 'IBM EGA 858': 'cp858', 'IBM EGA 860': 'cp860', 'IBM EGA 861': 'cp861', 'IBM EGA 862': 'cp862', 'IBM EGA 863': 'cp863', 'IBM EGA 864': 'cp864', 'IBM EGA 865': 'cp865', 'IBM EGA 866': 'cp866', 'IBM EGA 869': 'cp869', 'IBM EGA 872': 'cp872', 'IBM EGA43': 'cp437', 'IBM EGA43 437': 'cp437', 'IBM EGA43 720': 'cp720', 'IBM EGA43 737': 'cp737', 'IBM EGA43 775': 'cp775', 'IBM EGA43 819': 'cp819', 'IBM EGA43 850': 'cp850', 'IBM EGA43 852': 'cp852', 'IBM EGA43 855': 'cp855', 'IBM EGA43 857': 'cp857', 'IBM EGA43 858': 'cp858', 'IBM EGA43 860': 'cp860', 'IBM EGA43 861': 'cp861', 'IBM EGA43 862': 'cp862', 'IBM EGA43 863': 'cp863', 'IBM EGA43 864': 'cp864', 'IBM EGA43 865': 'cp865', 'IBM EGA43 866': 'cp866', 'IBM EGA43 869': 'cp869', 'IBM EGA43 872': 'cp872', 'IBM VGA': 'cp437', 'IBM VGA 437': 'cp437', 'IBM VGA 720': 'cp720', 'IBM VGA 737': 'cp737', 'IBM VGA 775': 'cp775', 'IBM VGA 819': 'cp819', 'IBM VGA 850': 'cp850', 'IBM VGA 852': 'cp852', 'IBM VGA 855': 'cp855', 'IBM VGA 857': 'cp857', 'IBM VGA 858': 'cp858', 'IBM VGA 860': 'cp860', 'IBM VGA 861': 'cp861', 'IBM VGA 862': 'cp862', 'IBM VGA 863': 'cp863', 'IBM VGA 864': 'cp864', 'IBM VGA 865': 'cp865', 'IBM VGA 866': 'cp866', 'IBM VGA 869': 'cp869', 'IBM VGA 872': 'cp872', 'IBM VGA25G': 'cp437', 'IBM VGA25g 437': 'cp437', 'IBM VGA25g 720': 'cp720', 'IBM VGA25g 737': 'cp737', 'IBM VGA25g 775': 'cp775', 'IBM VGA25g 819': 'cp819', 'IBM VGA25g 850': 'cp850', 'IBM VGA25g 852': 'cp852', 'IBM VGA25g 855': 'cp855', 'IBM VGA25g 857': 'cp857', 'IBM VGA25g 858': 'cp858', 'IBM VGA25g 860': 'cp860', 'IBM VGA25g 861': 'cp861', 'IBM VGA25g 862': 'cp862', 'IBM VGA25g 863': 'cp863', 'IBM VGA25g 864': 'cp864', 'IBM VGA25g 865': 'cp865', 'IBM VGA25g 866': 'cp866', 'IBM VGA25g 869': 'cp869', 'IBM VGA25g 872': 'cp872', 'IBM VGA50': 'cp437', 'IBM VGA50 437': 'cp437', 'IBM VGA50 720': 'cp720', 'IBM VGA50 737': 'cp737', 'IBM VGA50 775': 'cp775', 'IBM VGA50 819': 'cp819', 'IBM VGA50 850': 'cp850', 'IBM VGA50 852': 'cp852', 'IBM VGA50 855': 'cp855', 'IBM VGA50 857': 'cp857', 'IBM VGA50 858': 'cp858', 'IBM VGA50 860': 'cp860', 'IBM VGA50 861': 'cp861', 'IBM VGA50 862': 'cp862', 'IBM VGA50 863': 'cp863', 'IBM VGA50 864': 'cp864', 'IBM VGA50 865': 'cp865', 'IBM VGA50 866': 'cp866', 'IBM VGA50 869': 'cp869', 'IBM VGA50 872': 'cp872'}

	Translation map for embedded font hints in SAUCE records as documented at
http://www.acid.org/info/sauce/sauce.htm section FontName. Used by
showart() to automatically determine which codepage to be used
by utf8 terminals to provide an approximate translation.

	
x84.bbs.output.SYNCTERM_FONTMAP = ('cp437', 'cp1251', 'koi8_r', 'iso8859_2', 'iso8859_4', 'cp866', 'iso8859_9', 'haik8', 'iso8859_8', 'koi8_u', 'iso8859_15', 'iso8859_4', 'koi8_r_b', 'iso8859_4', 'iso8859_5', 'ARMSCII_8', 'iso8859_15', 'cp850', 'cp850', 'cp885', 'cp1251', 'iso8859_7', 'koi8-r_c', 'iso8859_4', 'iso8859_1', 'cp866', 'cp437', 'cp866', 'cp885', 'cp866_u', 'iso8859_1', 'cp1131', 'c64_upper', 'c64_lower', 'c128_upper', 'c128_lower', 'atari', 'pot_noodle', 'mo_soul', 'microknight', 'topaz')

	A mapping of SyncTerm fonts/code pages to their sequence value, for use
as argument font_name of syncterm_setfont().

Where matching, their python-standard encoding value is used, (fe. ‘cp437’).
Otherwise, the lower-case named of the font is used.

source:
http://cvs.synchro.net/cgi-bin/viewcvs.cgi/checkout/src/conio/cterm.txt

	
x84.bbs.output.decode_pipe(ucs)

	Return ucs containing ‘pipe codes’ with terminal color sequences.

These are sometimes known as LORD codes, as they were used in the DOS Door
game of the same name. Compliments encode_pipe().

	Parameters

	ucs (str [https://docs.python.org/3/library/stdtypes.html#str]) – string containing ‘pipe codes’.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
x84.bbs.output.echo(ucs)

	Display unicode terminal sequence.

	Parameters

	ucs (str [https://docs.python.org/3/library/stdtypes.html#str]) – unicode sequence to write to terminal.

	
x84.bbs.output.encode_pipe(ucs)

	Given a string containing ECMA-48 sequence, replace with “pipe codes”.

These are sometimes known as LORD codes, as they were used in the DOS Door
game of the same name. Compliments decode_pipe().

	Parameters

	ucs (str [https://docs.python.org/3/library/stdtypes.html#str]) – string containing ECMA-48 sequences.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
x84.bbs.output.from_cp437(text)

	Deprecated form of bytes.decode('cp437_art').

	
x84.bbs.output.ropen(filename, mode='rb')

	Open random file using wildcard (glob).

	
x84.bbs.output.showart(filepattern, encoding=None, auto_mode=True, center=False, poll_cancel=False, msg_cancel=None, force=False)

	Yield unicode sequences for any given ANSI Art (of art_encoding).

Effort is made to parse SAUCE data, translate input to unicode, and trim
artwork too large to display. If poll_cancel is not False,
represents time as float for each line to block for keypress – if any is
received, then iteration ends and msg_cancel is displayed as last line
of art.

If you provide no encoding, the piece encoding will be based on either
the encoding in the SAUCE record, the configured default or the default
fallback CP437 encoding.

Alternate codecs are available if you provide the encoding argument.
For example, if you want to show an Amiga style ASCII art file:

>>> from x84.bbs import echo, showart
>>> for line in showart('test.asc', 'topaz'):
... echo(line)

The auto_mode flag will, if set, only respect the selected encoding if
the active session is UTF-8 capable.

If center is set to True, the piece will be centered respecting the
current terminal’s width.

If force is set to true then the artwork will be displayed even if it’s
wider than the screen.

	
x84.bbs.output.syncterm_setfont(font_name, font_page=0)

	Send SyncTerm’s sequence for selecting a “font” codepage.

	Parameters

	
	font_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – any value of SYNCTERM_FONTMAP.

	font_page (int [https://docs.python.org/3/library/functions.html#int]) –

Reference:

CSI [p1 [; p2]] sp D
Font Selection
Defaults: p1 = 0 p2 = 0
"sp" indicates a single space character.
Sets font p1 to be the one indicated by p2. Currently only the primary
font (Font zero) and secondary font (Font one) are supported. p2 must
be between 0 and 255. Not all output types support font selection.
Only X11 and SDL currently do.

source:
http://cvs.synchro.net/cgi-bin/viewcvs.cgi/checkout/src/conio/cterm.txt

	
x84.bbs.output.timeago(secs, precision=0)

	Return human-readable string of seconds elapsed.

	Parameters

	
	secs (int [https://docs.python.org/3/library/functions.html#int]) – number of seconds “ago”.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – optional decimal precision of returned seconds.

Pass a duration of time and return human readable shorthand, fe:

>>> asctime(126.32)
' 2m 6s',
>>> asctime(70.9999, 2)
' 1m 10.99s'

x84.bbs.pager

Pager package for x/84.

	
class x84.bbs.pager.Pager(*args, **kwargs)

	Bases: x84.bbs.ansiwin.AnsiWindow

Scrolling viewer.

Class initializer.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – width of window.

	height (int [https://docs.python.org/3/library/functions.html#int]) – height of window.

	yloc (int [https://docs.python.org/3/library/functions.html#int]) – y-location of window.

	xloc (int [https://docs.python.org/3/library/functions.html#int]) – x-location of window.

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – initial pager contents.

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – color theme.

	glyphs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – bordering window character glyphs.

	keyset (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – command keys, global VI_KEYSET is default.

	
append(ucs)

	Update content buffer with additional line(s) of text.

“pipe codes” in ucs are decoded by decode_pipe().

	Parameters

	ucs (str [https://docs.python.org/3/library/stdtypes.html#str]) – unicode string to append-to content buffer.

:rtype str
:return: terminal sequence suitable for refreshing window.

	
bottom

	Bottom-most position that contains content.

	
content

	Content of pager.

Return value is “pipe encoded” by encode_pipe().
:rtype: str

	
init_keystrokes(keyset)

	Sets keyboard keys for various editing keystrokes.

	
move_down(num=1)

	Scroll down num rows and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
move_end()

	Scroll to bottom and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
move_home()

	Scroll to top and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
move_pgdown(num=1)

	Scroll down num pages and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
move_pgup(num=1)

	Scroll up num pages and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
move_up(num=1)

	Scroll up num rows and return refresh string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
position

	Index of content buffer displayed at top of window.

	
position_last

	Previous position before last move.

	
process_keystroke(keystroke)

	Process the keystroke and return string to refresh.

	Parameters

	keystroke (blessed.keyboard.Keystroke) – input from inkey().

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	string sequence suitable for refresh.

	
quit

	Whether a ‘quit’ character has been handled, such as escape.

	
read()

	Blocking read-eval-print loop for pager.

Processes user input, taking action upon and refreshing pager
until the escape key is pressed.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
refresh(start_row=0)

	Return unicode string suitable for refreshing pager window.

	Parameters

	start_row (int [https://docs.python.org/3/library/functions.html#int]) – refresh from only visible row ‘start_row’
and downward. This can be useful if only
the last line is modified; or in an
‘insert’ operation: only the last line
need be refreshed.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
refresh_row(row)

	Return unicode string suitable for refreshing pager row.

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – target row by visible index.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update(ucs)

	Update content buffer with newline-delimited text.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
visible_bottom

	Bottom-most window row that contains content.

	
visible_content

	Content that is visible in window.

x84.bbs.session

Session engine for x/84.

	
x84.bbs.session.SESSION = None

	singleton representing the session connected by current process

	
class x84.bbs.session.Session(terminal, sid, env, child_pipes, kind, addrport, matrix_args, matrix_kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A per-process Session. Begins by the run().

Instantiate a Session.

Only one session may be instantiated per process.

	Parameters

	
	terminal (blessed.Terminal) – interactive terminal associated with
this session.

	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) – session identification string

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – transport-negotiated environment variables, should
contain at least values for TERM and ‘encoding’.

	child_pipes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple of (writer, reader).

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – transport description string (ssh, telnet)

	addrport (str [https://docs.python.org/3/library/stdtypes.html#str]) – transport ip address and port as string

	matrix_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – When non-None, a tuple of positional
arguments passed to the matrix script.

	matrix_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – When non-None, a dictionary of keyword
arguments passed to the matrix script.

	
activity

	Current session activity.

This is arbitrarily set by session scripts.

This also updates xterm titles, and is globally broadcasted
as a “current activity” in the Who’s online script, for example.

	
buffer_event(event, data=None)

	Buffer and handle IPC data keyed by event.

	Parameters

	
	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – event name.

	data – event data.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the event was internally handled, and the caller
should take no further action.

Methods internally handled by this method:

	global: events where the first index of data is AYT.
This is sent by other sessions using the broadcast event, to
discover “who is online”.

	info-req: Where the first data value is the remote session-id
that requested it, expecting a return value event of info-ack
whose data values is a dictionary describing a session. This is
an extension of the “who is online” event described above.

	gosub: Allows one session to send another to a different script,
this is used by the default board chat.py for a chat request.

	
buffer_input(data, pushback=False)

	Receive keyboard input ,``data``, into input buffer.

Updates idle time, buffering raw bytes received from telnet client via
event queue. Sometimes a script may poll for, and receive keyboard
data, but wants to push it back in to the top of the stack to be
decoded by a later call to term.inkey(); in such case, pushback
should be set.

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – keyboard input data.

	pushback (bool [https://docs.python.org/3/library/functions.html#bool]) – whether it should be pushed to front of stack.

	
close()

	Close session, currently releases node lock..

	
connect_time

	Time of session start (as float).

	
current_script

	The current script being executed.

	
duration

	Seconds elapsed since connection began (as float).

	
encoding

	Session encoding, both input and output.

	
flush_event(event)

	Flush and return all data buffered for event.

	Parameters

	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – event name.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
idle

	Seconds elapsed since last keypress as float.

	
last_input_time

	Time of last keypress (as epoch, float).

	
node

	Unique numeric constant for this session.

This makes it simpler to refer to users who are online, instead
of by their full session-id (such as telnet-92.32.10.132:57331)
one can simply refer to node #1, etc..

	
pid

	Process ID of this session (int).

	
poll_event(event)

	Non-blocking poll for session event.

	Parameters

	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – an IPC event queue by name, such as input.

	Returns

	first matching IPC event data, or None.

	
read_event(event, timeout=None)

	Return data for given event by timeout.

	Parameters

	
	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – an IPC event queue by name, such as input.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Value of None is blocking (default), -1 is
non-blocking poll. All other values are blocking up
to value of timeout.

	Returns

	first matching IPC event data. If timeout is specified and
no matching IPC event is discovered, None is returned.

	
read_events(events, timeout=None)

	Return the first matched IPC data for any event specified by timeout.

	Parameters

	
	events (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – events to search for, for example
('input', 'refresh').

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Value of None is blocking (default), -1 is
non-blocking poll. All other values are blocking up
to value of timeout.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns

	first matching IPC event, data tuple, where event
matches one of the given events. If timeout is specified
and no matching IPC event is discovered, (None, None) is
returned.

	
run()

	Begin main execution of session.

Scripts manipulate control flow of scripts by raising the
Goto exception, or the gosub function.

	
runscript(script)

	Execute the main() callable of script identified by script.

	Parameters

	script (Script) – target script to execute.

	Returns

	the return value of the given script’s main() function.

	
script_module

	Base python module instance for userland scripts.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
script_path

	Base filepath folder for all scripts.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
send_event(event, data)

	Send data to IPC output queue in form of (event, data).

Supported event strings:

	disconnect: Session wishes to disconnect.

	logger: Data is logging record, used by IPCLogHandler.

	output: Unicode data to write to client.

	global: Broadcast event to other sessions.

	route: Send an event to another session.

	db-<schema>: Request sqlite dict method result.

	db=<schema>: Request sqlite dict method result as iterable.

	lock-<name>: Fine-grained global bbs locking.

	Parameters

	
	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – event name.

	data – event data.

	
show_traceback

	Whether traceback errors should be displayed to user (bool).

	
tap_input

	Whether keyboard input should be logged (bool).

	
tap_output

	Whether screen output should be logged (bool).

	
to_dict()

	Dictionary describing this session.

	
user

	User instance of this session.

	
write(ucs, encoding=None)

	Write unicode data ucs to terminal.

	
x84.bbs.session.disconnect(reason=u'')

	Disconnect session. Does not return.

	
x84.bbs.session.getch(timeout=None)

	A deprecated form of getterminal().inkey().

This is old behavior – upstream blessed project does the correct
thing. please use term.inkey() and see the documentation for
blessed’s inkey() method, it always returns unicode, never None,
and definitely never an integer. However some internal UI libraries
were built upon getch(), and as such, this remains …

	
x84.bbs.session.getsession()

	Return Session instance of current process.

	
x84.bbs.session.getterminal()

	Return blessed.Terminal instance of current session.

	
x84.bbs.session.gosub(script, *args, **kwargs)

	Call bbs script with optional arguments, Returns value.

	
x84.bbs.session.goto(script_name, *args, **kwargs)

	Change bbs script. Does not return.

x84.bbs.userbase

Userbase record database and utility functions for x/84.

	
class x84.bbs.userbase.Group(name, members=())

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple group record object.

Class initializer.

	
add(handle)

	Add user to group.

	
delete()

	Delete group record, enforces referential integrity with Users.

	
members

	Members of this group as user handles.

	
name

	Name of this group.

	
remove(handle)

	Remove user from group.

	
save()

	Save group record to database.

	
class x84.bbs.userbase.User(handle=u'anonymous')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple user record.

Class initializer.

	
auth(try_pass)

	Authenticate user with given password, try_pass.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	whether the password is correct.

	
calls

	Legacy, number of times user has ‘called’ this board.

	
delete()

	Remove user from user and group databases.

	
email

	E-mail address. May be used for password resets.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
group_add(group)

	Add user to group.

	
group_del(group)

	Remove user from group.

	
groups

	Set of groups user is a member of (set of strings).

	
handle

	User handle, also the database key.

	
is_sysop

	Whether the user is in the ‘sysop’ group.

	
lastcall

	Time last called, time.time() epoch-formatted (float).

	
location

	Legacy, used as a geographical location, group names, etc.

	
password

	Password in encrypted form as tuple (salt, hash).

Not generally used directly, but by auth().

The setter of this property is provided a password
in plain-text and encrypts it as given.

If a password has not yet been set, it is (None, None).

	
save()

	Save user record to database.

	
x84.bbs.userbase.check_anonymous_user(username)

	Boolean return when user is anonymous and is allowed.

	
x84.bbs.userbase.check_bye_user(username)

	Boolean return when username matches byecmds in ini cfg.

	
x84.bbs.userbase.check_new_user(username)

	Boolean return when username matches newcmds ini cfg.

	
x84.bbs.userbase.check_user_password(username, password)

	Boolean return when username and password match user record.

	
x84.bbs.userbase.check_user_pubkey(username, public_key)

	Boolean return when public_key matches user record.

	
x84.bbs.userbase.find_user(handle)

	Discover and return matching user by handle, case-insensitive.

	Returns

	matching handle as str, or None if not found.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or str.

	
x84.bbs.userbase.get_digestpw()

	Returns singleton to password digest routine.

	
x84.bbs.userbase.get_user(handle)

	Returns User record by handle.

	Return type

	User

	Returns

	instance of User

	
x84.bbs.userbase.list_users()

	Returns all user handles.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

:returns list of user handles.

	
x84.bbs.userbase.parse_public_key(user_pubkey)

	Return paramiko key class instance of a user’s public key text.

x84.bbs.ansiwin

Ansi Windowing package for x/84.

	
class x84.bbs.ansiwin.AnsiWindow(height, width, yloc, xloc, colors=None, glyphs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides position-relative drawing routines within a region.

The AnsiWindow base class provides position-relative window drawing
routines to terminal interfaces, such as pager windows, editors, and
lightbar lists, as well as some drawing niceties such as borders,
text alignment

Class initializer for base windowing class.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – width of window.

	height (int [https://docs.python.org/3/library/functions.html#int]) – height of window.

	yloc (int [https://docs.python.org/3/library/functions.html#int]) – y-location of window.

	xloc (int [https://docs.python.org/3/library/functions.html#int]) – x-location of window.

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – color theme.

	glyphs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – bordering window character glyphs.

	
align(text, width=None)

	Return text aligned to width using self.alignment.

When None (default), the visible width of this window is used.

	
alignment

	Horizontal justification of text content for method align.

	
border()

	Return sequence suitable for drawing window border.

	
clear()

	Return sequence suitable for erasing contents window.

	
erase()

	Return sequence suitable for erasing full window (with border).

	
erase_border()

	Return sequence suitable for erasing only the window border.

	
footer(text)

	Return sequence for displaying text on bottom border of window.

	
init_theme(colors=None, glyphs=None)

	Set glyphs and colors appropriate for “theming”.

This is called by the class initializer.

	
isinview()

	Whether this window is in bounds of terminal dimensions.

	
iswithin(win)

	Whether target window, win is within this windows bounds.

	
moved

	Whether movement has occurred (bool).

	
pos(yloc=None, xloc=None)

	Return sequence to move cursor to window-relative position.

	
resize(height=None, width=None, yloc=None, xloc=None)

	Adjust window dimensions by given parameter.

	
title(ansi_text)

	Return sequence for displaying text on top border of window.

	
visible_height

	Visible height of window after accounting for padding.

	
visible_width

	Visible width of window after accounting for padding.

	
willfit(win)

	Whether target window, win is within this windows bounds.

	
xpadding

	Horizontal padding of window border.

	
ypadding

	Vertical padding of window border.

x84.bbs.dbproxy

Database proxy helper for x/84.

	
class x84.bbs.dbproxy.DBProxy(schema, table='unnamed', use_session=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provide dictionary-like object interface to shared database.

A database call, such as __len__() or keys() is issued as a command
to the main engine when use_session is True, which spawns a thread
to acquire a lock on the database and return the results via IPC pipe
transfer.

Class initializer.

	Parameters

	
	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) – database key, becomes basename of .sqlite3 file.

	table (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional database table.

	use_session (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether iterable returns should be sent over
an IPC pipe (client is a
x84.bbs.session.Session instance),
or returned directly (such as used by the main
thread engine components.)

	
acquire()

	Acquire system-wide lock on database.

	
copy() → a shallow copy of D

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() → (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
proxy_iter(method, *args)

	Proxy for iterable dictionary method calls.

	
proxy_iter_session(method, *args)

	Proxy for iterable-return method calls over session IPC pipe.

	
proxy_method(method, *args)

	Proxy for dictionary method calls.

	
proxy_method_direct(method, *args)

	Proxy for direct dictionary method calls.

	
proxy_method_session(method, *args)

	Proxy for dictionary method calls over IPC pipe.

	
release()

	Release system-wide lock on database.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() → list of D's values

	

x84.bbs.exception

Custom exceptions for x/84.

	
exception x84.bbs.exception.Disconnected

	Bases: exceptions.Exception

Thrown when a client is disconnected.

	
exception x84.bbs.exception.Goto(script, *args, **kwargs)

	Bases: exceptions.Exception

Thrown to change script without returning.

x84.bbs.msgbase

Messaging database package for x/84.

	
class x84.bbs.msgbase.Msg(recipient=None, subject=u'', body=u'')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A record spec for messages held in the msgbase.

It contains many default properties to describe a conversation:

	stime, the time the message was sent.

	author, recipient, subject, and body are envelope
parameters.

	tags is for use with message groupings, containing a list of strings
that other messages may share in relation.

	parent points to the message this message directly refers to.

	children is a set of indices replied by this message.

	
ctime

	Datetime message was instantiated

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
queue_for_network()

	Queue message for networks, hosting or sending.

	
save(send_net=True, ctime=None)

	Save message to database, recording ‘tags’ db.

As a side-effect, it may queue message for delivery to
external systems, when configured.

	
stime

	Datetime message was saved to database

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
x84.bbs.msgbase.format_origin_line()

	Format origin line for message quoting.

	
x84.bbs.msgbase.get_msg(idx=0)

	Return Msg record instance by index idx.

	
x84.bbs.msgbase.get_origin_line()

	Return origin configuration item of [msg] section.

	
x84.bbs.msgbase.list_msgs(tags=None)

	Return set of indices matching tags, or all by default.

	
x84.bbs.msgbase.list_privmsgs(handle=None)

	Return all private messages for given user handle.

	
x84.bbs.msgbase.list_tags()

	Return set of available tags.

	
x84.bbs.msgbase.to_localtime(tm_value)

	convert given UTC time to local time

	
x84.bbs.msgbase.to_utctime(tm_value)

	convert given local time to UTC time

x84.bbs.selector

Left/Right lightbar choice selector for x/84.

	
class x84.bbs.selector.Selector(yloc, xloc, width, left, right, **kwargs)

	Bases: x84.bbs.ansiwin.AnsiWindow

A two-state horizontal lightbar interface.

Class initializer.

Initialize a selector of width, y x, and left/right values.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – width of window.

	yloc (int [https://docs.python.org/3/library/functions.html#int]) – y-location of selector.

	xloc (int [https://docs.python.org/3/library/functions.html#int]) – x-location of selector.

	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – color theme, only key value of selected
and unselected is used.

	keyset (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – command keys, global VI_KEYSET is
used by default, augmented by application
keys such as home, end, pgup, etc.

	left (str [https://docs.python.org/3/library/stdtypes.html#str]) – text string of left-side selection.

	right (str [https://docs.python.org/3/library/stdtypes.html#str]) – text string of right-side selection.

	
init_keystrokes(keyset)

	Sets keyboard keys for various editing keystrokes.

	
init_theme(colors=None, glyphs=None)

	Set glyphs and colors appropriate for “theming”.

This is called by the class initializer.

	
left

	Left-side value.

	
move_left()

	Move sel